[1]安 荣,王 贤.具有Friction边界条件的Navier-Stokes方程的两重牛顿校正算法[J].温州大学学报(自然科学版),2013,(01):001-7.
 AN Rong,WANG Xian.Two-level Newton Correction Algorithm for Solving Navier-Stokes Equations with Friction Boundary Conditions[J].Journal of Wenzhou University,2013,(01):001-7.
点击复制

具有Friction边界条件的Navier-Stokes方程的两重牛顿校正算法
分享到:

《温州大学学报》(自然科学版)[ISSN:1674-3563/CN:33-1344/N]

卷:
期数:
2013年01期
页码:
001-7
栏目:
数学研究
出版日期:
2013-02-25

文章信息/Info

Title:
Two-level Newton Correction Algorithm for Solving Navier-Stokes Equations with Friction Boundary Conditions
作者:
安 荣王 贤
温州大学数学与信息科学学院,浙江温州 325035
Author(s):
AN Rong WANG Xian
School of Mathematics and Information Science, Wenzhou University, Wenzhou, China 325035
关键词:
Navier-Stokes方程Friction边界条件稳定有限元方法两重牛顿校正方法
Keywords:
Navier-Stokes Equations Friction Boundary Conditions Stable Finite Element Method Two-level Newton Correction Algorithm
分类号:
O241
文献标志码:
A
摘要:
基于压力投影稳定有限元方法,给出一个求解具有Friction边界条件的Navier-Stokes方程的两重牛顿校正算法.从获得的误差估计可以看出,如果细网格尺度满足h=O(H^4),那么该两重牛顿校正算法与一重稳定有限元方法具有相同的收敛阶.与有关文献相比,该算法的计算效率更高.
Abstract:
Based on the pressure projection stable finite element method, this paper presents a two-level Newton correction algorithm for solving Navier-Stokes equations with friction boundary conditions. From the error estimations obtained, it can be seen that this method has the same order of convergence as one-fold stable finite element method if the fine grid scale accords with the formula .Reference to relevant documents, it can be found that the algorithm has higher efficiency of calculation.

参考文献/References:

[1] Fujita H. A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions [J]. RIMS Kokyuroku, 1994, 888: 199-216.
[2] Bochev P, Dohrmann C, Gunzburger M. Stabilization of low-order mixed finite element [J]. SIAM J Numer Anal, 2006, 44(1): 82-101.
[3] Li J, He Y. A stabilized finite element method based on two local Gauss integrations for the Stokes equations [J]. J Comput Appl Math, 2008, 214(1): 58-65.
[4] Li Y, An R. Two-Level Pressure Projection Finite Element Methods for Navier- Stokes Equations with Nonlinear Slip Boundary Conditions [J]. Appl Numer Math, 2011, 61(3): 285-297.
[5] Xu J. Two-grid Discretization Techniques for Linear and Nonlinear PDEs [J]. SIAM J Numer Anal, 1996, 33(5): 1759-1777.
[6] Li Y, Li K. Pressure Projection stabilized finite element for Navier-Stokes equations with nonlinear slip boundary conditions [J]. Computing, 2010, 87(3-4): 113-133.

备注/Memo

备注/Memo:
收稿日期:2012-06-09
基金项目:国家自然科学基金项目(10901122,11001205,11126226);浙江省自然科学基金项目(LY12A01015,Y6110240)
作者简介:安荣(1980- ),男,山西太原人,副教授,博士,研究方向:偏微分方程数值解
更新日期/Last Update: 2013-02-25