[1]王 芳,程俊荣.求解奇异线性方程组的两种预条件QMR算法[J].温州大学学报(自然科学版),2013,(01):024-30.
 WANG Fang,CHENG Junrong.The Two Preconditioned QMR Algorithms for Solving Singular Linear Equations[J].Journal of Wenzhou University,2013,(01):024-30.
点击复制

求解奇异线性方程组的两种预条件QMR算法
分享到:

《温州大学学报》(自然科学版)[ISSN:1674-3563/CN:33-1344/N]

卷:
期数:
2013年01期
页码:
024-30
栏目:
数学研究
出版日期:
2013-02-25

文章信息/Info

Title:
The Two Preconditioned QMR Algorithms for Solving Singular Linear Equations
作者:
王 芳程俊荣
温州大学数学与信息科学学院,浙江温州 325035
Author(s):
WANG Fang CHENG Junrong
College of Mathematics and Information Science, Wenzhou University, Wenzhou, China 325035
关键词:
奇异线性方程组预条件恰当分裂QMR算法
Keywords:
Singular Linear Equations Preconditioned Proper Splitting QMR Algorithm
分类号:
O241.6
文献标志码:
A
摘要:
主要讨论求解奇异线性方程组的两种预条件QMR算法,证明了相应的收敛性.数值试验表明,在收敛速度上,两种预条件QMR算法比预条件GMRES算法具有明显的优越性.
Abstract:
This paper mainly discusses the two preconditioned QMR algorithms for solving singular linear equations and thus proves the corresponding convergence. Numerical experiments show that these two algorithms have better convergence speed than the preconditioned GMRES algorithm.

参考文献/References:

[1] Parlett B N, Taylor D R, Liu Z A. A look-ahead Lanczos algorithm for unsymmetrices [J]. Math Comp, 1985, 44: 105-124.
[2] Freund R, Nachtigal N. QMR: a quasi-minimal residual methods for non-Hermitian linear systems [J]. Numer Math, 1991, 60: 315-339.
[3] Freund R. A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems [J]. SIAM J Sci Comput, 1993, 14: 470-482.
[4] Freund R, Hochbruck M. On the use of two OMR algorithms for solving singular systems and applications in marko- vchain modeling [J]. Numer Linear Algebra Appl, 1994, 1: 403-420.
[5] Zhang N. A note on preconditioned GMRES for solving singular linear systems [J]. BIT Numer Math, 2010, 50: 207-220.
[6] Saad Y, Schultz M H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems [J]. SIAM J Sci Stat Comput, 1986, 7: 858-869.
[7] Berman A, Plemmons R. Cones and iterative methods for best least squares solutions of linear systems [J]. SIAM J Numer Anal, 1974, 11: 145-154.
[8] Zhang N, Wei Y. On the convergence of general stationary iterative methods for Range-Hermitian singular linear systems [J]. Numer Linear Algebra Appl, 2010, 17: 139-154.
[9] Kelley C T. Iterative methods for linear and nonlinear equations [M]. Philadelphia: SIAM, 1995: 60-66.
[10] Zhang S L, Oyanagi Y, Sugihara M. Necessary and sufficient conditions for the convergence of Orthomin(k) on singular and inconsistent linear systems [J]. Numer Math, 2000, 87: 391-405.

相似文献/References:

[1]吕月燕,张乃敏.求解奇异鞍点问题的参数化预条件HSS方法[J].温州大学学报(自然科学版),2016,(04):001.
 LV Yueyan,ZHANG Naimin.The Study of the Parameterized Preconditioned HSS Method to Solve Singular Saddle Point Problems[J].Journal of Wenzhou University,2016,(01):001.

备注/Memo

备注/Memo:
收稿日期:2011-04-13
基金项目:浙江省自然科学基金(Y1110451)
作者简介:王芳(1987- ),女,安徽宿州人,硕士研究生,研究方向:计算数学
更新日期/Last Update: 2013-02-25