[1]谭小东,高 微.一维XXZ环形自旋链中的量子关联[J].温州大学学报(自然科学版),2013,(01):036-43.
 TAN Xiaodong,GAO Wei.Quantum Correlations in One-dimensional Ring XXZ Spin Chain[J].Journal of Wenzhou University,2013,(01):036-43.
点击复制

一维XXZ环形自旋链中的量子关联
分享到:

《温州大学学报》(自然科学版)[ISSN:1674-3563/CN:33-1344/N]

卷:
期数:
2013年01期
页码:
036-43
栏目:
物理与电子科学
出版日期:
2013-02-25

文章信息/Info

Title:
Quantum Correlations in One-dimensional Ring XXZ Spin Chain
作者:
谭小东高 微
温州大学物理与电子信息工程学院,浙江温州 325035
Author(s):
TAN Xiaodong GAO Wei
School of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou, China 325035
关键词:
XXZ自旋链量子纠缠量子失协量子关联量子相变
Keywords:
XXZ Spin Chain Quantum Entanglement Quantum Discord Quantum Correlations Quantum Phase Transitions
分类号:
O413.1
文献标志码:
A
摘要:
研究了系统尺度L=8的一维XXZ环形自旋链中的两体和多体量子纠缠以及两体量子失协,在这个过程中,充分考虑了温度和粒子间隔对纠缠和量子失谐的影响.结果发现,同种情况下,三体和四体纠缠比两体的更加“强壮”,且在低温条件下,利用多体纠缠可以探测到系统发生量子相变的临界点.与纠缠相比,量子失谐可以在较高温度下存在,且在相变点处总是表现出尖峰行为,这使得量子失谐在探测相变点方面更具优越性.
Abstract:
The paper studies pair-wise and multiple quantum entanglement and pair-wise quantum discord in one-dimensional ring XXZ spin chain whose system scale L equals 8, and takes full account of the effects of temperature and particle interval on quantum entanglement and quantum discord in this process. The results show that three- and four-qubit entanglement are more “robust” than the pair-wise one under the same conditions, and the critical points on which the system produces quantum phase transitions can be detected through the multiple entanglement at low temperatures. Compared with the quantum entanglement, the quantum discord not only can survive at higher temperatures but also always shows cusp-like behavior at the phase transition point, which endows it with more advantages in the detection of the phase transition point.

参考文献/References:

[1] Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Physical Review Letters, 1993, 70: 1895-1899.
[2] Bennett C H, Brassard G. Quantum cryptography: public-key distribution and coin tossing [EB/OL].
[2012-03-08]. http://www.cs.ucsb.edu/~chong/290N-W06/BB84.pdf.
[3] Bennett C H, DiVincenzo D P. Quantum information and computation [J]. Nature, 2000, 404(6775): 247-55.
[4] Sachdev S. Quantum Phase Transitions [M]. Cambridge: Cambridge University Press, 2000: 1-33.
[5] Osterloh A, Luigi A, Falci G, et al. Scaling of entanglement close to a quantum phase transition [J]. Nature, 2002, 416: 608.
[6] Wootters W K. Entanglement of formation of an arbitrary state of two qubits [J]. Physical Review Letters, 1998, 80: 2245-2248.
[7] O’Connor K M, Wootters W K. Entangled rings [J]. Physical Review A, 2001, 63: 052302.
[8] Jin B Q, Korepin V E. Localizable entanglement in antiferromagnetic spin chains [J]. Physical Review A, 2004, 69: 062314.
[9] Gu S J, Lin H Q, Li Y Q. Entanglement, quantum phase transition, and scaling in the XXZ chain [J]. Physical Review A, 2003, 68: 042330.
[10] Wang X G. Entanglement in the quantum Heisenberg XY model [J]. Physical Review A, 2001, 64: 012313.
[11] Wang X G, Wang Z D. Thermal entanglement in ferrimagnetic chains [J]. Physical Review A, 2006, 73: 064302.
[12] Kamta G L, Starace A F. Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain [J]. Physical Review Letters, 2002, 88: 107901.
[13] Wu L A, Sarandy M S, Lidar D A. Quantum Phase Transitions and Bipartite Entanglement [J]. Physical Review Letters, 2004, 93(25): 250404.
[14] Yang M F. Reexamination of entanglement and the quantum phase transition [J]. Physical Review A, 2005, 71(3): 030302.
[15] Jin B Q, Korepin V. Quantum S C, Toeplitz Determinants and the Fisher-Hartwig Conjecture [J]. Journal of statistical physics, 2004, 116(1): 79-95.
[16] Keating J P, Mezzadri F. Entanglement in Quantum Spin Chains, Symmetry Classes of Random Matrices, and Conformal Field Theory [J]. Physical Review Letters, 2005, 94(5): 050501.
[17] Eisler V, Zimborás Z. Entanglement in the XX spin chain with an energy current [J]. Physical Review A, 2005, 71(4): 042318.
[18] Kargarian M, Jafari R, Langari A. Renormalization of entanglement in the anisotropic Heisenberg (XXZ) model [J]. Physical Review A, 2008, 77: 032346.
[19] Facchi P, Florio G, Invernizzi C, et al. Entanglement of two blocks of spins in the critical Ising model [J]. Physical Review A, 2008, 78(5): 052302.
[20] Furukawa S, Pasquier V, Shiraishi J. Mutual Information and Boson Radius in a c=1 Critical System in One Dimension [J]. Physical Review Letters, 2009, 102(17): 170602.
[21] Wichterich H, Molina-Vilaplana J, Bose S. Scaling of entanglement between separated blocks in spin chains at criticality [J]. Physical Review A, 2009, 80(1): 010304.
[22] Henderson L, Vedral V. Classical, quantum and total correlations [J]. Journal of Physics A: Mathematical and General, 2001, 34: 6899.
[23] Ollivier H, Zurek W H. Quantum discord: A measure of the quantumness of correlations [J]. Physical Review Letters, 2001, 88: 017901.
[24] Datta A, Shaji A, Caves C M. Quantum discord and the power of one qubit [J]. Physical Review Letters, 2008, 100: 050502.
[25] Lanyon B P, Barbieri M, Almeida M P, et al. Experimental quantum computing without entanglement [J]. Physical Review Letters, 2008, 101: 200501.
[26] Ferraro A, Aolita L, Cavalcanti D, et al. Almost all quantum states have nonclassical correlations [J]. Physical Review A, 2010, 81(5): 052318.
[27] Xu J S, Xu X Y, Li C F, et al. Experimental investigation of classical and quantum correlations under decoherence [J]. Nature Communication, 2010, DOI: 10.1038/ncomms1005.
[28] Sarandy M S. Classical correlation and quantum discord in critical systems [J]. Physical Review A, 2009, 80(2): 022108.
[29] Chen Y X, Li S W. Quantum correlations in topological quantum phase transitions [J]. Physical Review A, 2010, 81(3): 032120.
[30] Werlang T, Trippe C, Ribeiro G A P, et al. Quantum Correlations in Spin Chains at Finite Temperatures and Quantum Phase Transitions [J]. Physical Review Letters, 2010, 105(9): 095702.
[31] Vidal G, Werner R F. Computable measure of entanglement [J]. Physical Review A, 2002, 65(3): 032314.
[32] 张永德. 量子信息物理原理[M]. 北京: 科学出版社, 2005: 79-91.
[33] Luo S L. Quantum discord for two-qubit systems [J]. Physical Review A, 2008, 77(4): 042303.
[34] Takahashi M. Thermodynamics of One-dimensional Solvable Models [M]. Cambridge: Cambridge University Press, 1999: 46-64.

备注/Memo

备注/Memo:
收稿日期:2012-05-29
作者简介:谭小东(1985- ),男,陕西宝鸡人,硕士研究生,研究方向:量子信息
更新日期/Last Update: 2013-02-25