[1]李 勇,郑唯加.基于伪范数的联合多通道彩色图像去噪算法[J].温州大学学报(自然科学版),2020,(03):029-36.
 LI Yong,ZHENG Weijia.Multi-Channel Denoising Algorithm of Color Image Based on Pseudo Norm[J].Journal of Wenzhou University,2020,(03):029-36.
点击复制

基于伪范数的联合多通道彩色图像去噪算法
分享到:

《温州大学学报》(自然科学版)[ISSN:1674-3563/CN:33-1344/N]

卷:
期数:
2020年03期
页码:
029-36
栏目:
计算机科学
出版日期:
2020-08-25

文章信息/Info

Title:
Multi-Channel Denoising Algorithm of Color Image Based on Pseudo Norm
作者:
李 勇1郑唯加2
1.安徽财经大学统计与应用数学学院,安徽蚌埠 233030;2.安徽财经大学金融学院,安徽蚌埠 233030
Author(s):
LI Yong1 ZHENG Weijia2
1. Institute of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, China 233030; 2. School of Finance, Anhui University of Finance and Economics, Bengbu, China 233030
关键词:
伪范数彩色图像去噪ALM算法收敛性
Keywords:
Pseudo Norm Color Image Denoising ALM Algorithm Convergence
分类号:
TN911
文献标志码:
A
摘要:
彩色图像具有RGB 3个色彩通道,传统的彩色图像去噪方法大多是对每个通道逐个进行去噪处理,但这样会破坏不同通道之间的相关性.基于先前的灰度图像去噪工作,考虑到不同通道的相关性,提出了联合多通道彩色图像去噪算法,该算法具有良好的收敛性.实验证明,相比与传统的去噪方法,所给算法的去噪效果具有明显提升.
Abstract:
There are three RGB color channels in color image. Most of the traditional color image denoising methods denoise each channel one by one, which, however, destroys the correlation between different channels. Based on the previous work of gray image denoising and given the correlation of different channels, a joint multi-channel color image denoising algorithm is proposed, which has well convergence. The experimental results show that the proposed algorithm is better than traditional denoising methods in the denoising effect.

参考文献/References:

[1] Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering [J]. IEEE T Image Process, 2007, 16(8): 2080-2095.
[2] Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries [J]. IEEE T Image Process, 2006, 15: 3736-3745.
[3] Mairal J, Bach F, Ponce J, et al. Non-local sparse models for image restoration [EB/OL]. [2020-03-01]. https:// www.ixueshu.com/document/9a7a1f1110c830ad318947a18e7f9386.html.
[4] Cai J F, Candès E J, Shen Z W. A singular value thresholding algorithm for matrix completion [J]. Siam J Optimiz, 2008, 20(4): 1956-1982.
[5] Gu S H, Xie Q, Meng D Y, et al. Weighted nuclear norm minimization and its applications to low level vision [J]. Int J Comput Vision, 2017, 121(2): 183-208.
[6] 林鑫,李勇.基于非凸范数的低维图像去噪问题研究[J].哈尔滨商业大学学报(自然科学版),2019,35(4):439-442.
[7] Lu C, Tang J, Yan S, et al. Nonconvex nonsmooth low-rank minimization via iteratively reweighted nuclear norm [J]. IEEE T Image Process, 2015, 25(2): 829-839.
[8] Chen Y, Guo Y, Wang Y, et al. Denoising of hyperspectral images using nonconvex low rank matrix approximation [J]. IEEE T Geosci Remote, 2017, 55(9): 5366-5380.
[9] Wang A, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE T Image Process, 2014, 13(4): 600-612.

备注/Memo

备注/Memo:
收稿日期:2020-03-20
基金项目:国家自然科学基金项目(11601001)
作者简介:李勇(1963- ),安徽蚌埠人,男,副教授,硕士,研究方向:信息与计算科学
更新日期/Last Update: 2020-08-25