[1]刘卿君,查石友.构造(2+1)维扩展浅水波方程的新奇精确解[J].温州大学学报(自然科学版),2020,(02):011-16.
 LIU Qingjun,ZHA Shiyou.Construction of Novel Exact Solutions for (2+1)-dimensional Extended Shallow Water Wave Equation[J].Journal of Wenzhou University,2020,(02):011-16.
点击复制

构造(2+1)维扩展浅水波方程的新奇精确解
分享到:

《温州大学学报》(自然科学版)[ISSN:1674-3563/CN:33-1344/N]

卷:
期数:
2020年02期
页码:
011-16
栏目:
数学
出版日期:
2020-05-25

文章信息/Info

Title:
Construction of Novel Exact Solutions for (2+1)-dimensional Extended Shallow Water Wave Equation
作者:
刘卿君1查石友2?
1.曲靖师范学院经济与管理学院,云南曲靖 655011;2.寻甸县第一中学,云南寻甸 655200
Author(s):
LIU Qingjun1 ZHA Shiyou2
1. College of Economics and Management, Qujing Normal University, Qujing, China 655011; 2. Xundian No. 1 Secondary School, Xundian, China 655200
关键词:
(2+1)维扩展浅水波方程新奇精确解任意函数
Keywords:
(2+1)-dimensional Extended Shallow Water Wave Equation Novel Exact Solutions Arbitrary Function
分类号:
O175.2
文献标志码:
A
摘要:
本文研究了(2+1)维扩展浅水波方程,通过变量变换得到双线性形式.基于符号计算,获得一类新奇精确解.这些解包含一个任意实函数 ,选择特殊的函数 得到了这些解的动态图,孤子传播表明含有 的孤子比没有 的孤子更一般,并且 可以影响孤子解的特征.
Abstract:
Under investigation in this paper is a (2+1)-dimensional extended shallow water wave equation. A bi-linear form is obtained through variable transformation and a novel type of exact solutions is derived based on symbolic computation. These solutions include an arbitrary real function , the selection of which produces a dynamic graph of these solutions. Discussions on the propagation of the solitons indicate that the soliton solutions with are more general than those without , and could affect the features of the soliton solutions.

参考文献/References:

[1] 李翊神.孤子与可积系统[M].上海:上海科技教育出版社,1999:12,61-64.
[2] Zha Q L, Li Z B. Darboux transformation and multi-solitons for complex mkdv equation [J]. Chinese Phys Lett, 2008, 25(1): 8-11.
[3] 扎其劳.可积系统中的非线性波[M].北京:科学出版社,2018:164-177.
[4] Hirota R. The direct method in soliton theory [M]. Cambridge: Cambridge University Press, 2004: 110-156.
[5] 王红艳,胡星标.带自相容源的孤立子方程[M].北京:清华大学出版社,2008:2,15-21.
[6] 広田良吾.孤子理论中的直接方法[M].王红艳,李春霞,赵俊霄,等,译.胡星标,校.北京:清华大学出版社,2008:5,108-138.
[7] Ma H C, Deng A P. Lump solution of (2+1)-dimensional Boussinesq equation [J]. Commun Theor Phys, 2016, 65(5): 546-552.
[8] Huang L L, Chen Y. Lump solutions and interaction phenomenon for (2+1)-dimensional Sawada-Kotera equation [J]. Commun Theor Phys, 2017, 67 (5): 473-478.
[9] Chen M D, Li X, Wang Y, et al. A pair of resonance stripe solitons and lump solutions to a reduced (3+1)-dimensional nonlinear evolution equation [J]. Commun Theor Phys, 2017, 67(6): 595-600.
[10] Ma Z Y, Fei J X, Chen J C. Lump and stripe soliton solutions to the generalized Nizhnik-Novikov-Veselov equation [J]. Commun Theor Phys, 2018, 70(5): 521-528.
[11] Wazwaz A M. Multiple-soliton solutions for extended shallow water wave equations [J]. Stud Math Sci, 2010, 1: 21-29.
[12] Bekir A, Aksoy E. Exact solutions of shallow water wave equations by using the -expansion method [J]. Waves Random Complex, 2012, 22: 317-331.
[13] Liu N, Ding F. Lax pair, B?cklund transformation and conservation laws for the (2+1)-dimensional extended shallow water wave equation [J]. Comput Fluids, 2014, 89: 153-156.
[14] Huang Q M, Gao Y T. Wronskian, Pfaffian and periodic wave solutions for a (2+1)-dimensioal extended shallow water wave equation [J]. Nonlinear Dyn, 2017, DOI:10.1007/s11071-017-3630-y.
[15] Wang Y H, Chen Y. Binary bell polynomials, bilinear approach to exact periodic wave solutions of (2+1)- dimensional nonlinear evolution equations [J]. Commun Theor Phys, 2011, 56(4): 672-678.

备注/Memo

备注/Memo:
收稿日期:2019-05-15
作者简介:刘卿君(1976- ),女,湖南衡阳人,讲师,硕士,研究方向:应用数学.? 通信作者,980122707@qq.com
更新日期/Last Update: 2020-05-25